Quick Summary
Your data table needs:
| First Column | Type columns… | … | … | Optional | Optional | Optional | |
|---|---|---|---|---|---|---|---|
| Unit ID | Count | Count | Count | adult_count | subadult_count | lat | lng |
| Grave_ID | pottery | flint_tools | beads |
|---|---|---|---|
| G001 | 2 | 1 | 0 |
| G002 | 0 | 2 | 5 |
| G003 | 1 | 0 | 0 |
| G004 | 3 | 1 | 12 |
| First Column | Second Column | Optional |
|---|---|---|
| Unit ID | Size value | Other non-numerical metadata |
| House_ID | Size_m2 |
|---|---|
| H001 | 24 |
| H002 | 45 |
| H003 | 18 |
| H004 | 67 |
Adding prefixes before an underscore groups related items together. This gives you control over how the Category Bias simulation treats your data.
Example prefix patterns:
| Prefix | Meaning | Examples |
|---|---|---|
c_ |
Ceramics | c_bowl, c_jug, c_amphora |
s_ |
Stone | s_axe, s_scraper, s_blade |
f_ |
Flint/Lithics | f_blade, f_core, f_arrowhead |
b_ |
Bone | b_awl, b_needle, b_pin |
cu_ |
Copper/Bronze | cu_dagger, cu_pin, cu_ring |
g_ |
Gold | g_ring, g_pendant |
o_ |
Ornaments | o_bead, o_pendant, o_ring |
| Column names | Why | |
|---|---|---|
| ✓ Good | c_bowl, c_jug, c_amphora, s_axe, s_blade, cu_pin | Prefixes group related items; Category Bias simulation understands relationships |
| ✗ Poor | Bowl, Jug, Amphora, Axe, Blade, Pin | No grouping information; every column treated independently |
The following item types are automatically recognized and handled
specially in the Category Bias simulation (their split potential is
limited using asinh(median) instead of raw counts):
bead / beadsornamentpearl / perlependantpebblesherd / sherdsshellarrowheadWhy? These items often appear in large quantities (e.g., 50 beads in one grave). Without special handling, the category bias simulation might try to split “beads” into the maximum sub-types, which is unrealistic.
lat and lngIf your data includes coordinates, the app will:
| Grave_ID | c_bowl | lat | lng |
|---|---|---|---|
| G001 | 1 | 55.6761 | 12.5683 |
| G002 | 0 | 55.6789 | 12.5701 |
| G003 | 2 | 55.6823 | 12.5742 |
adult_count and
subadult_countFor cemeteries with age information, include these columns to:
| Grave_ID | c_bowl | beads | adult_count | subadult_count |
|---|---|---|---|---|
| G001 | 1 | 0 | 1 | 0 |
| G002 | 0 | 12 | 0 | 1 |
| G003 | 2 | 0 | 2 | 0 |
| G004 | 1 | 3 | 1 | 1 |
Interpretation:
adult_count = 1, subadult_count = 0: Single adult
burialadult_count = 0, subadult_count = 1: Single child
burialadult_count = 2, subadult_count = 0: Double adult
burialadult_count = 1, subadult_count = 1: Adult + child
burialQuantWealth accepts:
.csv) — semicolon
; or comma , separated.xlsx,
.xls)The app auto-detects the separator for CSV files.
Common issues to avoid:
0 or leave empty for
absent items)stone_axe not stone axe)ä,
ø, é, etc.)Here is a well-structured example dataset you can download and try:
Download the example file: quantwealth_example.csv
Upload this file to QuantWealth to see how a well-organized dataset produces clear results.
| Grave_ID | Site | adult_count | subadult_count | lat | lng | c_bowl | c_jug | c_amphora | s_axe | s_blade | f_arrowhead | cu_pin | cu_dagger | o_beads | o_pendant | b_awl |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G001 | Vikletice | 1 | 0 | 55.68 | 12.56 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| G002 | Vikletice | 1 | 0 | 55.68 | 12.57 | 0 | 1 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 1 |
| G003 | Vikletice | 1 | 0 | 55.68 | 12.58 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 0 |
| G004 | Vikletice | 1 | 0 | 55.69 | 12.56 | 1 | 0 | 1 | 1 | 2 | 5 | 1 | 0 | 0 | 0 | 0 |
| G005 | Vikletice | 1 | 0 | 55.69 | 12.57 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| G006 | Vikletice | 0 | 1 | 55.69 | 12.58 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |
| G007 | Vikletice | 1 | 0 | 55.69 | 12.59 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| G008 | Vikletice | 1 | 0 | 55.70 | 12.56 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| G009 | Vikletice | 2 | 1 | 55.70 | 12.57 | 3 | 2 | 1 | 1 | 1 | 8 | 2 | 1 | 25 | 3 | 1 |
| G010 | Vikletice | 1 | 0 | 55.70 | 12.58 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| G011 | Vikletice | 1 | 0 | 55.70 | 12.59 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 1 |
| G012 | Vikletice | 1 | 0 | 55.71 | 12.56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| G013 | Vikletice | 1 | 0 | 55.71 | 12.57 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 12 | 2 | 0 |
| G014 | Vikletice | 1 | 0 | 55.71 | 12.58 | 0 | 0 | 0 | 1 | 1 | 4 | 0 | 0 | 0 | 0 | 0 |
| G015 | Vikletice | 0 | 1 | 55.71 | 12.59 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 |
c_ (ceramics),
s_ (stone), f_ (flint), cu_
(copper), o_ (ornaments), b_ (bone)o_beads (max 25) and
f_arrowhead (max 8) have high counts in some graves| Metric | Value |
|---|---|
| Total graves | 15 |
| Type columns | 11 |
| TOT range | 0 – 11 |
| Mean TOT | 3.6 |
| Adult graves | 13 |
| Subadult-only graves | 2 (G006, G015) |
| Richest grave | G009 (TOT = 11) |
| Empty graves | 1 (G012) |
Category Bias simulation will find:
c_ (3 cols),
s_ (2 cols), cu_ (2 cols), o_ (2
cols)o_beads,
f_arrowhead (will use IHS
transformation to limit splits)Before uploading your data:
Documentation for QuantWealth Archaeological Inequality Tool Last updated: Januar 2026